# arrow_back Solve the equation $\sqrt{x+18}=x-2$

29 views
Solve the equation $\sqrt{x+18}=x-2$

$x=7 \quad$ or $\quad x \neq-2$

Explanation:

$\sqrt{x+18}=x-2$
$x+18=x^{2}-4 x+4$
$0=x^{2}-5 x-14$
$(x-7)(x+2)=0$
$x=7 \quad$ or $\quad x \neq-2$

by Gold Status
(30,445 points)

## Related questions

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Solve $\sqrt{14+17 x-2 x^{2}}=x+2$
Solve $\sqrt{14+17 x-2 x^{2}}=x+2$Solve $\sqrt{14+17 x-2 x^{2}}=x+2$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Solve for $x$ in the equation $\dfrac{x+3}{6}=\dfrac{2}{3}$
Solve for $x$ in the equation $\dfrac{x+3}{6}=\dfrac{2}{3}$Solve for $x$ in the equation $\dfrac{x+3}{6}=\dfrac{2}{3}$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Solve for $x$ in the equation $\sqrt{2-7 x}+2 x=0$
Solve for $x$ in the equation $\sqrt{2-7 x}+2 x=0$Solve for $x$ in the equation $\sqrt{2-7 x}+2 x=0$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
How would you solve the equation $\dfrac{(v+2)^{2}-6}{3}=1$ ?
How would you solve the equation $\dfrac{(v+2)^{2}-6}{3}=1$ ?How would you solve the equation $\dfrac{(v+2)^{2}-6}{3}=1$ ? ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Solve $\dfrac{d y}{d x}=(y+x)^{2}$
Solve $\dfrac{d y}{d x}=(y+x)^{2}$Solve $\dfrac{d y}{d x}=(y+x)^{2}$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Solve the equation $x^2 + 5x - 20=0$
Solve the equation $x^2 + 5x - 20=0$Solve the equation $x^2 + 5x - 20=0$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Solve the proportion $\dfrac{5}{3}=\dfrac{x}{6}$ for the unknown value $x$.
Solve the proportion $\dfrac{5}{3}=\dfrac{x}{6}$ for the unknown value $x$.Solve the proportion $\dfrac{5}{3}=\dfrac{x}{6}$ for the unknown value $x$. ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Solve for $x$ in $\frac{x}{6}=\frac{3 x}{4}$
Solve for $x$ in $\frac{x}{6}=\frac{3 x}{4}$Solve for $x$ in $\frac{x}{6}=\frac{3 x}{4}$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Solve for $x$: $9^{x}+3^{2 x+1}=4 \sqrt{3}$
Solve for $x$: $9^{x}+3^{2 x+1}=4 \sqrt{3}$Solve for $x$: $9^{x}+3^{2 x+1}=4 \sqrt{3}$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Solve for $x$: $16^{x} \cdot 2^{x+1}=\sqrt[5]{4}$
Solve for $x$: $16^{x} \cdot 2^{x+1}=\sqrt[5]{4}$Solve for $x$: $16^{x} \cdot 2^{x+1}=\sqrt{4}$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Solve for $x$: $\sqrt{x^{2}-5}=2 \sqrt{x}$
Solve for $x$: $\sqrt{x^{2}-5}=2 \sqrt{x}$Solve for $x$: $\sqrt{x^{2}-5}=2 \sqrt{x}$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Solve for $x$ in $\sqrt{x-1}-3=0$
Solve for $x$ in $\sqrt{x-1}-3=0$Solve for $x$ in $\sqrt{x-1}-3=0$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Solve for $x$ :
Solve for $x$ : Solve for $x$ : $(x-2)(4+x)=0$ $3 x^{2}-2 x=14$ (correct to TWO decimal places.) $2^{x+2}+2^{x}=20$ ...
close

Notice: Undefined index: avatar in /home/customer/www/mathsgee.com/public_html/qa-theme/AVEN/qa-theme.php on line 993
Solve $\sqrt{x-1} +3 =x$ for $x$
Solve $\sqrt{x-1} +3 =x$ for $x$Solve $\sqrt{x-1} +3 =x$ for $x$ ...
Grade 12 Paper 1 - Solve for x: \sqrt{3 -26x} = 3xGrade 12 Paper 1 - Solve for $x$: $\sqrt{3 -26x} = 3x$ ...